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Proactive Cryptosystems

Motivation:
weakest link in a public key cryptosystem is often the 
server that ‘runs’ the cryptosystem

Goal of proactive cryptosystems:
run a ‘conventional’ public key cryptosystem 
in a more fault-tolerant and secure way
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Proactive Cryptosystems
Main idea: distribution + periodic refresh [OY91]

distribution:
- distribute secret key among n servers (setup)
- perform cryptographic operation by multiparty protocol

refresh:
periodically refresh shares of secret key

Goal: small fraction of servers cannot learn
the secret key or make the protocol fail

Goal: re-establish security of servers 
that recovered from a corruption 

(recovery may occur by means of external mechanisms)
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Asynchronous Proactive Cryptosystems
Illustration:

Security guarantees:
the ‘proactivized’ cryptosystem is secure if no large 
fraction of servers is corrupted between two refreshes 

time

server P1 :

server Pn:

phase 0 phase 1 phase 2

setup: 
key is shared among all servers periodic refresh:

servers execute protocol to refresh shares
(protocol triggered upon signal of local clock)

Operational time periods

time signals 
from local clock

corruption

recover
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Overview of the Paper
Contents:

set of protocols for proactivizing Discrete Logarithm 
based cryptosystems over asynchronous network

secure if adversary crashes or eavesdrops t < n/3 in 
every two subsequent phases (no Byzantine corruption)

Novelty:
protocols do not rely on Byzantine agreement 
→ surprising… (contradicts a folklore believe)
→ bounded worst-case complexity 

(before only bounded average case)
→ worst-case round-complexity = 3 times smaller 

than average-case complexity of previous soultions
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Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and 

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions
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The Building Blocks

Reconstructible Proactive 
Pseudorandomness Protocol

Proactive Secret Sharing 
Protocol

Proactive Joint Random Sharing 
Protocol

Hybrid Secret Sharing Protocol

Asynchronous Proactive Secure Network Model

DL-Based Proactive Cryptosystems
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Hybrid Secret Sharing Protocol
Input: k-bit secret s and k-bit randomness r

Output of server i:
let f1(x),…, fn(x) denote pseudo-random t-degree 
polynomials over F

2k[x] s.t. f1(0)+…+ fn(0) = s

Server i outputs the green values, i.e., fi(0), f1(i),…, fn(i)
Properties:

- servers only learn their input and output
- either all or no server terminates
- protocol is deterministic

f1(x)

fn(x)

fi(x)

1 2 3 i



10

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and 

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions



11

Reconstructible Proactive 
Pseudorandomness (RPP) Scheme

Goal: 
- provide at every phase τ every server Pi with a new,
secret pseudo-random value prτ,i

- allow any set of (n-t) servers to reconstruct the value 
prτ,j of any server Pj
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RPP Scheme Implementation

Setup (by trusted dealer):
1) choose n polynomials of degree n-t at random over F

2k[x]

2) give to every server Pi the green values in the picture

f1(x)

fn(x)

fi(x)

1 2 3 i

k-bit key ri=fi(0)

(n-t)-out-of-n backup share rji=fj(i)
of every other server’s key rj,
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RPP Scheme Implementation
Idea: 

compute prτ,i as φri
(c) for some constant c, where

{φi} is a distributed pseudorandom function family

→ pseudo-randomness and reconstructability of prτ,i
follows from the distribution of ri and properties of {φi}

Remaining Issue: refresh keys ri and backup shares!

• for a random key r, φr(v) looks random for any v
• if r1,…,rn are polynomial (n-t)-out-n shares of r, then
φr(v) can be computed from any (n-t)-sized subset of
φr1

(v),…,φrn
(v)

• for efficient such functions, see [Nie02]
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RPP Scheme Implementation
Refreshing keys and backup shares (steps of server Pi ):
1) upon phase change:

share φri
(a) using randomness φri

(b), where
a,b are public constants, and ri is current key

2) upon terminating (n-t) sharing protocols:
reveal φrmi

(a), φrmi
(b), for dealers m with pending sharings

3) upon receiving (n-t) ‘shares’ φrmi
(a) φrmi

(b), for some m:
compute φri

(a) and φri
(b), and complete sharing locally

4) upon  terminating all sharing protocols:
fresh key r’i= sum of all additive shares
fresh backup share r’mi = sum of all received backup 
shares for server Pm
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Refreshing the keys (illustration)

r’1 … r’1i

r’ii

r’ni…

… r’1i

… …

r’i0 r’in

… …

r’n0 … r’nn

r1

r2

rn

old keys

fresh keys

wise)-(component
          ∑

fn(i)

fi(i)

f1(i)

…

…

fi(n)fi(0)
……

fn(n)…fn(0)
……

f1(n)…f1(0)
shares distributed by
hybrid sharing protocols

dealer = server 1
dealer = server 2

dealer = server n
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RPP Properties

Correctness: 
pevious picture = situation when all sharing protocol terminate

BUT:
- What if certain sharing protocols do not terminate?
- Don’t servers need to agree on which sharing protocols
terminate, and which have to be reconstructed locally?

NO!
→ since sharing is deterministic, protocol and “local
reconstruction” yield the same shares! (stil the same picture)
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RPP Properties
Pseudo-randomness: 
Lots of information gets revealed
Why are fresh keys pseudo-random?

Claim: The old key of at least one honest server remains 
hidden from the adversary. 

Argument: 
By eavesdropping, adversary learns t old keys and t backup 

shares in the remaining (n-t) old keys
To learn all old keys, she needs n-2t backup shares in the n-t

remaining old keys
Honest servers reveal only t (n-t) < (n-2t) backup shares!
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Proactive Secret Sharing (PSS) 
Scheme

Setup:
dealer establishes a (t+1)-out-n sharing of a secret s

Goal: 
In every phase, 

servers compute a fresh (t+1)-out-n sharing of s

→ protects secret s from t-limited mobile adversary
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sn
=

PSS Implementation

Previous solutions [CKPS02]:

1) Every server i re-shares 
its current (t+1)-out-n share si

f1(n)…f1(i)…

fn(n)…fn(i)…fn(0) 

2) Agree on sub-set of
terminating re-sharing protocols

s … s’i … s’n

3) sum
- over agreed-on sharings
- use Lagrange coefficients

s1
=

f1(0)
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PSS Implementation

Now: Refresh hybrid sharing

1) reshare current additive share
using hybrid share and
reconstructable randomness

2) Reconstruct non-
terminating sharings

3) Sum componentwise

fn(i)

fi(i)

f1(i)

…

…

fi(n)fi(0)
……

fn(n)…fn(0)
……

f1(n)…f1(0)s1 ,r1

s2 ,r2

sn ,rn

dealer = server 1
dealer = server 2

dealer = server n

s’1 … s’1i

s’ii

s’ni…

… s’1i
… …

s’i0 s’in

… …

s’n0 … s’nn
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Proactive Joint Random Sharing 
(JRS) Scheme

Goal: 
In every phase, 

servers can repeatedly compute (t+1)-out-n sharings of 
random values unkown to the adversary

Implementation:
- based on Hybrid Secret Sharing combined with
Reconstructible Proactive Randomness

- works as refresh in Proactive Secret Sharing
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Schnorr’s Signatures [Schnorr’91]

Setup: 
p a large prime

<g> multiplicative subgroup of Z*
p, generated by g,

of order q such that q| p-1
H – a hash function

Signatures:
secret key:  x (randomly drawn from Zq )
public key:  y = gx

a signature of a message m is (R, S), where 
r  is random from Zq,
R = gr mod p,
S = r+H(m||R) x mod q

to verify a signature (R, S) of m check
gS = R yH(m||R) mod p
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Proactive Schnorr’s Signatures
Maintaining the secret key:

run PSS scheme → in every phase, every server Pi
receives a fresh (t+1)-out-n share xi of the secret x

Signing message m:
choosing r: 

run the JRSS protocol→ every server Pi receives a 
share ri of a random value r

compute R = gr mod p:
every server broadcasts gri

from t+1 such values, compute
compute S = r+H(m||R) x mod q:

every server broadcasts si = ri+H(m||R) xi mod q
from t+1 such values, compute

iirgR λ)(∏=

iisS λ∑=
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Conclusions

Asynchronous Proactive Secret Sharing and
Joint Random Secret Sharing 

- do not need agreement
- have efficient worst-case complexity

→ large class of DL-based cryptosystems can be 
efficiently proactivized (asynchronously)

Open problems
can we do the same for Byzantine adversary?
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