Asynchronous Proactive Cryptosystems without Agreement

Stas Jarecki (UC Irvine)

Bartosz Przydatek (ETH Zurich, Switzerland) Reto Strobl (Google, Switzerland)

Proactive Cryptosystems

Motivation:

weakest link in a public key cryptosystem is often the server that 'runs' the cryptosystem

Goal of proactive cryptosystems:

run a 'conventional' public key cryptosystem in a more fault-tolerant and secure way

Proactive Cryptosystems

Main idea: distribution + periodic refresh [OY91]

distribution:

- distribute secret key among n servers (setup)
- perform cryptographic operation by multiparty protocol

Goal: small fraction of servers cannot learn the secret key or make the protocol fail

refresh:

periodically refresh shares of secret key

Goal: re-establish security of servers

that recovered from a corruption

(recovery may occur by means of external mechanisms)

Asynchronous Proactive Cryptosystems

Security guarantees:

the 'proactivized' cryptosystem is secure if no large fraction of servers is corrupted between two refreshes

Overview of the Paper

Contents:

set of protocols for proactivizing Discrete Logarithm based cryptosystems over asynchronous network

secure if adversary crashes or eavesdrops t < n/3 in every two subsequent phases (no Byzantine corruption)

Novelty:

protocols do not rely on Byzantine agreement

- \rightarrow surprising... (contradicts a folklore believe)
- → bounded worst-case complexity (before only bounded average case)
- → worst-case round-complexity = 3 times smaller than average-case complexity of previous soultions

Outline of the talk

- Introduction to proactive cryptosystems
- An overview of the proposed construction
- Protocols
 - Hybrid Secret Sharing
 - Reconstructible Proactive Pseudorandomness
 - Proactive Secret Sharing and Joint Random Secret Sharing
- An example application: Proactive Schnorr's Signatures
- Conclusions

The Building Blocks

DL-Based Proactive Cryptosystems

Asynchronous Proactive Secure Network Model

Outline of the talk

- Introduction to proactive cryptosystems
- An overview of the proposed construction
- Protocols
 - Hybrid Secret Sharing
 - Reconstructible Proactive Pseudorandomness
 - Proactive Secret Sharing and Joint Random Secret Sharing
- An example application: Proactive Schnorr's Signatures
- Conclusions

Hybrid Secret Sharing Protocol

Input: *k*-bit secret *s* and *k*-bit randomness *r*

Output of server i:

let $f_1(x), ..., f_n(x)$ denote pseudo-random *t*-degree polynomials over $F_{2k}[x]$ s.t. $f_1(0) + ... + f_n(0) = s$

Server *i* outputs the green values, i.e., $f_i(0), f_1(i), \dots, f_n(i)$

Properties:

- servers only learn their input and output
- either all or no server terminates
- protocol is deterministic

Outline of the talk

- Introduction to proactive cryptosystems
- An overview of the proposed construction
- Protocols
 - Hybrid Secret Sharing
 - Reconstructible Proactive Pseudorandomness
 - Proactive Secret Sharing and Joint Random Secret Sharing
- An example application: Proactive Schnorr's Signatures
- Conclusions

Reconstructible Proactive Pseudorandomness (RPP) Scheme

Goal:

- provide at every phase τ every server P_i with a new, secret pseudo-random value $pr_{\tau,i}$
- allow any set of (*n*-*t*) servers to reconstruct the value $pr_{\tau,j}$ of any server P_j

RPP Scheme Implementation

Setup (by trusted dealer):

1) choose *n* polynomials of degree *n*-*t* at random over $F_{2k}[x]$

(*n*-*t*)-out-of-*n* backup share $r_{ji}=f_j(i)$ of every other server's key r_{ji}

RPP Scheme Implementation

Idea:

compute $pr_{\tau,i}$ as $\varphi_{r_i}(c)$ for some constant c, where $\{\varphi_i\}$ is a distributed pseudorandom function family

 \rightarrow pseudo-randomness and reconstructability of $pr_{\tau,i}$ follows from the distribution of r_i and properties of $\{\varphi_i\}$

- for a random key *r*, $\varphi_r(v)$ looks random for any *v*
- if r₁,...,r_n are polynomial (n-t)-out-n shares of r, then φ_r(v) can be computed from any (n-t)-sized subset of φ_{r1}(v),...,φ_{rn}(v)
 for efficient such functions, see [Nie02]

Remaining Issue: refresh keys r_i and backup shares!

RPP Scheme Implementation

Refreshing keys and backup shares (steps of server P_i): 1) upon phase change:

share $\varphi_{r_i}(a)$ using randomness $\varphi_{r_i}(b)$, where *a,b* are public constants, and r_i is current key

2) upon terminating (*n*-*t*) **sharing protocols:** reveal $\varphi_{r_{mi}}(a)$, $\varphi_{r_{mi}}(b)$, for dealers m with pending sharings

3) upon receiving (n-t) 'shares' $\varphi_{r_{ni}}(a) \varphi_{r_{ni}}(b)$, for some *m*: compute $\varphi_{r_i}(a)$ and $\varphi_{r_i}(b)$, and complete sharing locally

4) upon terminating all sharing protocols: fresh key r'_i = sum of all additive shares fresh backup share r'_{mi} = sum of all received backup shares for server P_m

Refreshing the keys (illustration)

RPP Properties

Correctness:

pevious picture = situation when all sharing protocol terminate

BUT:

- What if certain sharing protocols do not terminate?
- Don't servers need to agree on which sharing protocols terminate, and which have to be reconstructed locally?

NO!

 \rightarrow since sharing is deterministic, protocol and "local reconstruction" yield the same shares! (stil the same picture)

RPP Properties

Pseudo-randomness:

Lots of information gets revealed Why are fresh keys pseudo-random?

Claim: The old key of at least one honest server remains hidden from the adversary.

Argument:

- By eavesdropping, adversary learns t old keys and t backup shares in the remaining (*n*-t) old keys
- To learn all old keys, she needs n-2t backup shares in the n-t remaining old keys

Honest servers reveal only t(n-t) < (n-2t) backup shares!

Outline of the talk

- Introduction to proactive cryptosystems
- An overview of the proposed construction
- Protocols
 - Hybrid Secret Sharing
 - Reconstructible Proactive Pseudorandomness
 - Proactive Secret Sharing and Joint Random Secret Sharing
- An example application: Proactive Schnorr's Signatures
- Conclusions

Proactive Secret Sharing (PSS) Scheme

Setup:

dealer establishes a (t+1)-out-n sharing of a secret s

Goal:

In every phase, servers compute a *fresh* (*t*+1)-*out-n* sharing of *s*

 \rightarrow protects secret s from *t*-limited mobile adversary

PSS Implementation

PSS Implementation

Proactive Joint Random Sharing (JRS) Scheme

Goal:

In every phase,

servers can repeatedly compute (t+1)-out-n sharings of **random values** unkown to the adversary

Implementation:

- based on Hybrid Secret Sharing combined with Reconstructible Proactive Randomness
- works as refresh in Proactive Secret Sharing

Outline of the talk

- Introduction to proactive cryptosystems
- An overview of the proposed construction
- Protocols
 - Hybrid Secret Sharing
 - Reconstructible Proactive Pseudorandomness
 - Proactive Secret Sharing and Joint Random Secret Sharing
- An example application: Proactive Schnorr's Signatures
- Conclusions

Schnorr's Signatures [Schnorr'91]

Setup:

- p a large prime <g> multiplicative subgroup of \mathbf{Z}_{p}^{*} , generated by g, of order q such that q/p-1
- H a hash function

Signatures:

secret key: x (randomly drawn from Z_q) public key: $y = g^x$

a signature of a message *m* is (*R*, *S*), where

r is random from \mathbb{Z}_q , $R = g^r \mod p$, $S = r + H(m//R) \mod q$

to verify a signature (*R*, *S*) of *m* check $g^{S} = R y^{H(m//R)} \mod p$

Proactive Schnorr's Signatures

Maintaining the secret key:

run PSS scheme \rightarrow in every phase, every server P_i receives a fresh (t+1)-out-n share x_i of the secret x

Signing message m:

choosing *r*:

run the JRSS protocol \rightarrow every server P_i receives a share r_i of a random value r

compute $R = g^r \mod p$:

every server broadcasts g^{r_i}

from *t*+1 such values, compute $R = \prod (g^{r_i})^{\lambda_i}$

compute $S = r + H(m//R) \times mod q$:

every server broadcasts $s_i = r_i + H(m//R) x_i \mod q$ from t+1 such values, compute $S = \sum s_i \lambda_i$

Conclusions

Asynchronous Proactive Secret Sharing and Joint Random Secret Sharing

- do not need agreement
- have efficient worst-case complexity
- → large class of DL-based cryptosystems can be efficiently proactivized (asynchronously)

Open problems

can we do the same for Byzantine adversary?