
1

Asynchronous Proactive
Cryptosystems without Agreement

Stas Jarecki (UC Irvine)
Bartosz Przydatek (ETH Zurich, Switzerland)

Reto Strobl (Google, Switzerland)

2

Proactive Cryptosystems

Motivation:
weakest link in a public key cryptosystem is often the
server that ‘runs’ the cryptosystem

Goal of proactive cryptosystems:
run a ‘conventional’ public key cryptosystem
in a more fault-tolerant and secure way

3

Proactive Cryptosystems
Main idea: distribution + periodic refresh [OY91]

distribution:
- distribute secret key among n servers (setup)
- perform cryptographic operation by multiparty protocol

refresh:
periodically refresh shares of secret key

Goal: small fraction of servers cannot learn
the secret key or make the protocol fail

Goal: re-establish security of servers
that recovered from a corruption

(recovery may occur by means of external mechanisms)

4

Asynchronous Proactive Cryptosystems
Illustration:

Security guarantees:
the ‘proactivized’ cryptosystem is secure if no large
fraction of servers is corrupted between two refreshes

time

server P1 :

server Pn:

phase 0 phase 1 phase 2

setup:
key is shared among all servers periodic refresh:

servers execute protocol to refresh shares
(protocol triggered upon signal of local clock)

Operational time periods

time signals
from local clock

corruption

recover

5

Overview of the Paper
Contents:

set of protocols for proactivizing Discrete Logarithm
based cryptosystems over asynchronous network

secure if adversary crashes or eavesdrops t < n/3 in
every two subsequent phases (no Byzantine corruption)

Novelty:
protocols do not rely on Byzantine agreement
→ surprising… (contradicts a folklore believe)
→ bounded worst-case complexity

(before only bounded average case)
→ worst-case round-complexity = 3 times smaller

than average-case complexity of previous soultions

6

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions

7

The Building Blocks

Reconstructible Proactive
Pseudorandomness Protocol

Proactive Secret Sharing
Protocol

Proactive Joint Random Sharing
Protocol

Hybrid Secret Sharing Protocol

Asynchronous Proactive Secure Network Model

DL-Based Proactive Cryptosystems

8

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions

9

Hybrid Secret Sharing Protocol
Input: k-bit secret s and k-bit randomness r

Output of server i:
let f1(x),…, fn(x) denote pseudo-random t-degree
polynomials over F

2k[x] s.t. f1(0)+…+ fn(0) = s

Server i outputs the green values, i.e., fi(0), f1(i),…, fn(i)
Properties:

- servers only learn their input and output
- either all or no server terminates
- protocol is deterministic

f1(x)

fn(x)

fi(x)

1 2 3 i

10

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions

11

Reconstructible Proactive
Pseudorandomness (RPP) Scheme

Goal:
- provide at every phase τ every server Pi with a new,
secret pseudo-random value prτ,i

- allow any set of (n-t) servers to reconstruct the value
prτ,j of any server Pj

12

RPP Scheme Implementation

Setup (by trusted dealer):
1) choose n polynomials of degree n-t at random over F

2k[x]

2) give to every server Pi the green values in the picture

f1(x)

fn(x)

fi(x)

1 2 3 i

k-bit key ri=fi(0)

(n-t)-out-of-n backup share rji=fj(i)
of every other server’s key rj,

13

RPP Scheme Implementation
Idea:

compute prτ,i as φri
(c) for some constant c, where

{φi} is a distributed pseudorandom function family

→ pseudo-randomness and reconstructability of prτ,i
follows from the distribution of ri and properties of {φi}

Remaining Issue: refresh keys ri and backup shares!

• for a random key r, φr(v) looks random for any v
• if r1,…,rn are polynomial (n-t)-out-n shares of r, then
φr(v) can be computed from any (n-t)-sized subset of
φr1

(v),…,φrn
(v)

• for efficient such functions, see [Nie02]

14

RPP Scheme Implementation
Refreshing keys and backup shares (steps of server Pi):
1) upon phase change:

share φri
(a) using randomness φri

(b), where
a,b are public constants, and ri is current key

2) upon terminating (n-t) sharing protocols:
reveal φrmi

(a), φrmi
(b), for dealers m with pending sharings

3) upon receiving (n-t) ‘shares’ φrmi
(a) φrmi

(b), for some m:
compute φri

(a) and φri
(b), and complete sharing locally

4) upon terminating all sharing protocols:
fresh key r’i= sum of all additive shares
fresh backup share r’mi = sum of all received backup
shares for server Pm

15

Refreshing the keys (illustration)

r’1 … r’1i

r’ii

r’ni…

… r’1i

… …

r’i0 r’in

… …

r’n0 … r’nn

r1

r2

rn

old keys

fresh keys

wise)-(component
 ∑

fn(i)

fi(i)

f1(i)

…

…

fi(n)fi(0)
……

fn(n)…fn(0)
……

f1(n)…f1(0)
shares distributed by
hybrid sharing protocols

dealer = server 1
dealer = server 2

dealer = server n

16

RPP Properties

Correctness:
pevious picture = situation when all sharing protocol terminate

BUT:
- What if certain sharing protocols do not terminate?
- Don’t servers need to agree on which sharing protocols
terminate, and which have to be reconstructed locally?

NO!
→ since sharing is deterministic, protocol and “local
reconstruction” yield the same shares! (stil the same picture)

17

RPP Properties
Pseudo-randomness:
Lots of information gets revealed
Why are fresh keys pseudo-random?

Claim: The old key of at least one honest server remains
hidden from the adversary.

Argument:
By eavesdropping, adversary learns t old keys and t backup

shares in the remaining (n-t) old keys
To learn all old keys, she needs n-2t backup shares in the n-t

remaining old keys
Honest servers reveal only t (n-t) < (n-2t) backup shares!

18

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions

19

Proactive Secret Sharing (PSS)
Scheme

Setup:
dealer establishes a (t+1)-out-n sharing of a secret s

Goal:
In every phase,

servers compute a fresh (t+1)-out-n sharing of s

→ protects secret s from t-limited mobile adversary

20

sn
=

PSS Implementation

Previous solutions [CKPS02]:

1) Every server i re-shares
its current (t+1)-out-n share si

f1(n)…f1(i)…

fn(n)…fn(i)…fn(0)

2) Agree on sub-set of
terminating re-sharing protocols

s … s’i … s’n

3) sum
- over agreed-on sharings
- use Lagrange coefficients

s1
=

f1(0)

21

PSS Implementation

Now: Refresh hybrid sharing

1) reshare current additive share
using hybrid share and
reconstructable randomness

2) Reconstruct non-
terminating sharings

3) Sum componentwise

fn(i)

fi(i)

f1(i)

…

…

fi(n)fi(0)
……

fn(n)…fn(0)
……

f1(n)…f1(0)s1 ,r1

s2 ,r2

sn ,rn

dealer = server 1
dealer = server 2

dealer = server n

s’1 … s’1i

s’ii

s’ni…

… s’1i
… …

s’i0 s’in

… …

s’n0 … s’nn

22

Proactive Joint Random Sharing
(JRS) Scheme

Goal:
In every phase,

servers can repeatedly compute (t+1)-out-n sharings of
random values unkown to the adversary

Implementation:
- based on Hybrid Secret Sharing combined with
Reconstructible Proactive Randomness

- works as refresh in Proactive Secret Sharing

23

Outline of the talk

• Introduction to proactive cryptosystems
• An overview of the proposed construction
• Protocols

– Hybrid Secret Sharing
– Reconstructible Proactive Pseudorandomness
– Proactive Secret Sharing and

Joint Random Secret Sharing
• An example application: Proactive Schnorr’s Signatures
• Conclusions

24

Schnorr’s Signatures [Schnorr’91]

Setup:
p a large prime

<g> multiplicative subgroup of Z*
p, generated by g,

of order q such that q| p-1
H – a hash function

Signatures:
secret key: x (randomly drawn from Zq)
public key: y = gx

a signature of a message m is (R, S), where
r is random from Zq,
R = gr mod p,
S = r+H(m||R) x mod q

to verify a signature (R, S) of m check
gS = R yH(m||R) mod p

25

Proactive Schnorr’s Signatures
Maintaining the secret key:

run PSS scheme → in every phase, every server Pi
receives a fresh (t+1)-out-n share xi of the secret x

Signing message m:
choosing r:

run the JRSS protocol→ every server Pi receives a
share ri of a random value r

compute R = gr mod p:
every server broadcasts gri

from t+1 such values, compute
compute S = r+H(m||R) x mod q:

every server broadcasts si = ri+H(m||R) xi mod q
from t+1 such values, compute

iirgR λ)(∏=

iisS λ∑=

26

Conclusions

Asynchronous Proactive Secret Sharing and
Joint Random Secret Sharing

- do not need agreement
- have efficient worst-case complexity

→ large class of DL-based cryptosystems can be
efficiently proactivized (asynchronously)

Open problems
can we do the same for Byzantine adversary?

	Asynchronous Proactive Cryptosystems without Agreement
	Proactive Cryptosystems
	Proactive Cryptosystems
	Asynchronous Proactive Cryptosystems
	Overview of the Paper
	Outline of the talk
	The Building Blocks
	Outline of the talk
	Hybrid Secret Sharing Protocol
	Outline of the talk
	Reconstructible Proactive Pseudorandomness (RPP) Scheme
	RPP Scheme Implementation
	RPP Scheme Implementation
	RPP Scheme Implementation
	Refreshing the keys (illustration)
	RPP Properties
	RPP Properties
	Outline of the talk
	Proactive Secret Sharing (PSS) Scheme
	PSS Implementation
	PSS Implementation
	Proactive Joint Random Sharing (JRS) Scheme
	Outline of the talk
	Schnorr’s Signatures [Schnorr’91]
	Proactive Schnorr’s Signatures
	Conclusions

